Dynamics of Structures

Chapter 4. Response of SDOF to General Dynamic Loading

4.3 Examples

Figure 4.3.1     Example 4.3.1

Example 4.3.1

An undamped SDOF system with frequency ω\omega is suddenly subjected to a forcing function that decays exponentially with time and has a frequency ωˉ\bar{\omega}. If the system was initially at rest, derive an expression for the Dynamic Amplification Factor.

The system equation of motion can be written as,

mu¨+ku=Foeωˉtm \ddot{u} + ku = F_o e^{-\bar{\omega}t}

Since the system was at rest, we can write the Duhamel's integral solution as follows,

u(t)=Fomω0teωˉτ sin(ω(tτ)) dτ u(t) = \frac{F_o}{m \omega} \int_{0}^{t} e^{-\bar{\omega}\tau} \ \sin (\omega(t-\tau)) \ d \tau

Let's do the integration by parts, assume that v=sin(ω(tτ))v = \sin (\omega(t-\tau)) and dy=eωˉτdτdy = e^{-\bar{\omega}\tau} d \tau ,

dv=ωcos(ω(tτ)) dv = \omega \cos (\omega(t-\tau))

And,

y=1ωˉeωˉτ y = -\frac{1}{\bar{\omega}} e^{-\bar{\omega}\tau}

We can write,

u(t)=vy0tydv u(t) = vy - \int_{0}^{t} ydv

Or,

u(t)=Fomωωˉ[(sin(ω(tτ))eωˉτ)0t u(t) =-\frac{F_o}{m \omega \bar{\omega}} \Big[\Big(\sin (\omega(t-\tau)) e^{-\bar{\omega}\tau} \Big)|_0^t
0tωeωˉτcos(ω(tτ))dτ] - \int_{0}^{t} \omega e^{-\bar{\omega}\tau} \cos (\omega(t-\tau)) d\tau \Big]

Integrating the second part again by parts using v=cos(ω(tτ))v = \cos (\omega(t-\tau)) and dy=eωˉτdτdy = e^{-\bar{\omega}\tau} d \tau ,

u(t)=Fomω(ωˉ2+ω2)[ωˉsin(ωt)ωcos(ωt)+ωeωˉt] u(t) =\frac{F_o}{m \omega (\bar{\omega}^2 + \omega^2)} \Big[\bar{\omega} \sin (\omega t) - \omega \cos(\omega t) + \omega e^{-\bar{\omega}t} \Big]

Rearranging the terms,

u(t)=Fom(ωˉ2+ω2)[ωˉωsin(ωt)cos(ωt)+eωˉt] u(t) =\frac{F_o}{m (\bar{\omega}^2 + \omega^2)} \Big[\frac{\bar{\omega}}{\omega} \sin (\omega t) - \cos(\omega t) + e^{-\bar{\omega}t} \Big]
u(t)=Fomω2(ωˉ2ω2+1)[ωˉωsin(ωt)cos(ωt)+eωˉt] u(t) =\frac{F_o}{m \omega^2 (\frac{\bar{\omega}^2}{\omega^2} + 1)} \Big[\frac{\bar{\omega}}{\omega} \sin (\omega t) - \cos(\omega t) + e^{-\bar{\omega}t} \Big]
u(t)=Fok(ωˉ2ω2+1)[ωˉωsin(ωt)cos(ωt)+eωˉt] u(t) =\frac{F_o}{k (\frac{\bar{\omega}^2}{\omega^2} + 1)} \Big[\frac{\bar{\omega}}{\omega} \sin (\omega t) - \cos(\omega t) + e^{-\bar{\omega}t} \Big]

Knowing that ust=Foku_{st} = \frac{F_o}{k} ,

u(t)=ust(ωˉ2ω2+1)[ωˉωsin(ωt)cos(ωt)+eωˉt] u(t) =\frac{u_{st}}{ (\frac{\bar{\omega}^2}{\omega^2} + 1)} \Big[\frac{\bar{\omega}}{\omega} \sin (\omega t) - \cos(\omega t) + e^{-\bar{\omega}t} \Big]
u(t)ust=1(ωˉ2ω2+1)[ωˉωsin(ωt)cos(ωt)+eωˉt]\frac{u(t)}{u_{st}} =\frac{1}{ (\frac{\bar{\omega}^2}{\omega^2} + 1)} \Big[\frac{\bar{\omega}}{\omega} \sin (\omega t) - \cos(\omega t) + e^{-\bar{\omega}t} \Big]

The Dynamic Amplification Factor can be obtained as,

DAF=1(ωˉ2ω2+1)[ωˉωsin(ωt)cos(ωt)+eωˉt]DAF =\frac{1}{ (\frac{\bar{\omega}^2}{\omega^2} + 1)} \Big[\frac{\bar{\omega}}{\omega} \sin (\omega t) - \cos(\omega t) + e^{-\bar{\omega}t} \Big]

The following graph plots the DAF againist time and calculates the frequency ratio and the first peak value of the DAF. Notice that after some time, the forcing function decays leaving the system oscillating under the steady state condition. Try to change the values of ω{\omega} and ωˉ\bar{\omega} and visualize the solution.

Tip: to micro change the slider values, place the mouse cursor on the slider, then use your keyboard right and left arrows to adjust the slider value.

ωˉ\bar{\omega}

ω{\omega}

tt

ωˉω=1.00\frac{\bar{\omega}}{\omega} = 1.00

u(t)ust=0.76\frac{u(t)}{u_{st}} = 0.76

Figure 4.3.2     Example 4.3.2

Example 4.3.2

The shown beam is supporting a concentrated weight of 10 kips at its mid span and is subjeted to the triangular pulse shown with Fo=20 kipsF_o = 20 \text{ kips} and td=0.15 st_d = 0.15 \text{ s} . Neglecting the weight of the beam, determine the maximum dynamic bending stress that will develop in the beam E=29000 ksiE = 29000 \text{ ksi} .

We first need to calculate the equivalent stiffness of the system k, k,

k=48EIL3k = \frac{48EI}{L^3}
k=48×29000×800.6(20×12)3k = \frac{48 \times 29000 \times 800.6}{(20 \times 12)^3}
k=80.62 kip/ink = 80.62 \text{ kip/in}

The mass of the system m, m,

m=Wg=10386m = \frac{W}{g}=\frac{10}{ 386 }
m=0.0259 kip. s2/inm = 0.0259 \space \text{kip. s}^2 \text{/in}

Calculate the system period T, T,

T=2πmk=2π0.025980.62T = 2 \pi \sqrt{\frac{m}{k}}= 2 \pi \sqrt{\frac{0.0259}{80.62}}
T=0.113 sT = 0.113 \space \text{s}
tdT=0.150.113=1.33\frac{t_d}{T} = \frac{0.15}{0.113} = 1.33

The solution for the triangular pulse was derived in equations 4.1.35 and 4.1.42 and can be plotted as a function of time. From the graph, the maximum DAF DAF is 1.65 at t= 0.053 s.

td / T = 1.33

u(t)/ust = 1.65

The maximum static bending stress in the beam can be calculated as,

σst=FoL/4S\sigma_{st} = \frac{F_o L/4}{S}
σst=20×(20×12)/489\sigma_{st} = \frac{20 \times (20 \times 12)/4}{89}
σst=13.65 ksi\sigma_{st} = 13.65 \text{ ksi}

The maximum dynamic bending stress in the beam can be calculated as,

σmax=σst×DAF\sigma_{max} = \sigma_{st} \times DAF
σmax=13.65×1.65\sigma_{max} = 13.65 \times 1.65
σmax=22.25 ksi\sigma_{max} = 22.25 \text{ ksi}